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Abstract
We review the symmetrized data acquisition method for producing artifact-free
Patterson functions from low-energy electron diffraction (LEED) IV spectra.
The differences between LEED Patterson functions and LEED holograms are
discussed.

1. Introduction

A Patterson function (PF) [1] gives vector positions of an atom relative to every other atom
in the unit cell of a crystal. This information is obtained directly from inversion of diffracted
intensities, without the use of an a priori model. Low-energy electron diffraction (LEED)
PF determination dates back to the work of Adams and Landman [2], who focused on the
specular beam. Extension of the method to cover other diffracted beams at normal incidence
was carried out by Chang et al [3], with very encouraging results. Recently, Wu and Tong [4]
applied the method to full beam sets at multiple incidence angles. In the presence of strong
multiple scattering, they show that full beam sets at multiple incidence angles are necessary for
the recovery of an artifact-free PF. In an artifact-free PF, each high-intensity spot corresponds
to a vector position of an atomic pair.

To understand how the PF method works, it is best to write down the diffracted intensities
in the far-field approximation [5, 6], due to a collection of scattering centres located at �r1, �r2,
etc, with respect to an arbitrary origin. Thus, single-scattering and second-order scattering
terms are given by

I (�ki, �kf ) ∝
∣∣∣∣f1e−i�q·�r1 + f2e−i�q·�r2 + f1f3e−i�kf ·�r1

eikr13

r13
ei�ki ·�r3 + · · ·

∣∣∣∣
2

(1)

where fi is the scattering factor of atom i. In equation (1), single-scattering events at �r1 and
�r2, and a second-order event wherein the incident electron first scatters at �r3, then at �r1, with
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r13 = |�r1 − �r3|, are explicitly shown. Squaring equation (1) gives the leading cross-term for
single-scattering events as

I1,2(�ki, �kf ) ∝ f1f
∗
2 e−i�q·�r12 (2)

where �r12 = �r1 − �r2 and the momentum transfer is �q = �kf − �ki . To obtain the PF, we

multiply the intensity by a phase factor ei�q· �R , which is conjugate to the phase factor of the
single-scattering cross-term. It is obvious that at �R = �r12, the phase factors ei�q· �R and e−i�q·�r12

cancel at all values of �q. Thus, a sum–integral over an extensive range of �q-values of the form

P( �R) =
∣∣∣∣
∑
k̂i

∑
�g‖

∫
I (�ki, �g‖ + q⊥êz)e

i�q· �R dq⊥

∣∣∣∣
2

(3)

produces peaks at �R = �rij , for all atomic pairs i, j . Here, P( �R) is the PF and �g‖ is a two-
dimensional reciprocal-lattice vector (i.e. beam) of the sample. For crystalline materials, only
�rij within the two-dimensional unit cell provides independent information. The factors �rij are
three dimensional, pointing between atoms in the same plane as well as in different planes.

It is clear that, in general, multiple-scattering cross-terms from equation (1) such as

I1,3(�ki, �kf ) ∝ f1f
∗
1 f ∗

3
e−ikr13

r13
ei�ki ·�r13 (4)

have phase factors e−ikr13 ei�ki ·�r13 . At any �R, these phase factors are not cancelled by ei�q· �R

for more than a subset of �q-values. Therefore, the contributions from multiple-scattering
terms can be phase cancelled if many �q-values are used. The exceptions are straight-through
multiple-scattering paths. The effects of straight-through multiple-scattering paths, which do
not produce artifacts, but shift the positions of spots, are discussed in section 3.

2. The symmetrized data acquisition (SDA) method for LEED Patterson functions

Non-straight-through multiple-scattering events are the main cause of artifacts in LEED PFs.
Since a sum over an extensive range of �q-values results in phase cancellation of multiple-
scattering terms, such an extensive sum can be obtained if a large set of �ki-values are used.
In LEED, two-dimensional periodicity requires that the diffracted beams have final momenta
�kf ‖ = �ki‖ + �g‖. Because a typical LEED screen has a central opening of ∼9◦ half-cone
angle, the beams are collected within a half-cone angular range of 9◦–51◦. This incomplete
sampling of reciprocal-lattice vectors at a single incidence angle can produce artifacts in the
PF [4]. A symmetrized data acquisition (SDA) scheme for processing LEED intensities at
multiple incidence angles was introduced recently [4]. In this scheme, the screen opening at
one incidence angle is always covered within the Ewald sphere of at least one other incidence
angle. The data from symmetry-related incidence angles are included in the sum of equation (3).
This step ensures that distances parallel to the surface are accurately determined. The reason
will be given in section 3.

3. Accuracy of LEED Patterson functions

The main source of error in LEED PFs comes from the scattering factors. The scattering factor,
fi , causes spots in the PF to shift from �rij [5–7]. We shall discuss the accuracy of LEED PFs in
comparison with that of LEED holograms. The first difference is that LEED PFs are derived
from single-scattering terms while LEED holograms are from second-order terms. Since
single scattering is stronger, LEED PFs typically give interatomic distances of many shells of
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neighbours while a LEED hologram gives only the nearest one or two neighbours. A second
difference is that in LEED PF inversion, the intensities I (�ki, �kf ) are used in the transform of
equation (3), and not the normalized functions χ(�ki, �kf ) = I (�ki, �kf )/I0(�ki, �kf )−1. In LEED
holography, I0(�ki, �kf ) is the scattered intensity at the reference atom. Because I0(�ki, �kf )

cannot be measured, either in LEED PFs or holograms, its elimination reduces a source of
uncertainty. The third difference is that in LEED PFs, the parallel components of the pairwise
distances are determined accurately. As mentioned earlier, shifts in the spot positions in either
PFs or holograms are caused by scattering factors. Because scattering factors are complex
numbers, their dependence on �ki or �kf introduces shifts in spot positions [5–7]. The SDA
scheme completely eliminates this error in the parallel components of LEED PF spots. The
reason is simple: for a system with C2 symmetry, e.g., for each term in the sum of equation (3)
that contains a product fi(�q‖)f ∗

j (�q‖), there exists another term that contains fi(−�q‖)f ∗
j (−�q‖).

The shift produced by the former term will be cancelled by an equal but opposite shift from
the latter term. Such cancellations are not present in electron holograms, because there, the
scattering factor is for angles between �rj and �kf and not between �ki and �kf . Because dynamical
LEED is least accurate in determining atomic positions parallel to the surface, LEED PFs offer
a very useful alternative.

For like elements, the phase factors in fif
∗
j also cancel. Thus, the vertical components

of �rij are also extremely accurate, if all contributions come from single-scattering events.
Unfortunately, higher-order events in which atoms are lined up either in the direction of �ki or
in that of �kf cannot be eliminated. We can see this by considering equation (4). If �r1 and �r3 are

lined up in the �kf -direction, then e−ikr13 is equivalent to e−ikf r1 eikf r3 and the product e−ikr13 ei�ki ·�r13

is indistinguishable from e−i�q·�r13 . This multiple-scattering cross-term will contribute to the spot
at �R = �r13, like the single-scattering cross-term f1f

∗
3 e−i�q·�r13 . While the phase factors in f1f

∗
3

from the single-scattering cross-term cancel for like elements, the straight-through (i.e. �r1 and
�r3 lined up in the �kf -direction) multiple-scattering cross-term has a residual phase factor from
the scattering factors.

There are reasons to believe that for many systems, the contributions from these straight-in
or straight-out terms may not be too large. First, these terms are for higher-order scattering
events and they are decreased by the factor 1/rij . Thus, contributions from far neighbours are
small. Second, in the set of �q-values, only a subset has near neighbours that are lined up with
either �ki or �kf .

The same straight-in or straight-out multiple-scattering terms also contribute to shifts in
the spots of LEED holograms [8]. Comparing the vertical shifts in the spot positions of LEED
PFs and holograms, the difference is that for the former, the leading term, i.e. single-scattering
events, are not shifted for like elements. In LEED holograms, on the other hand, the leading
term as well as higher-order straight-in and straight-out terms are all shifted, and by different
amounts.

We should mention that the cancellation of parallel component shifts remains valid for
any multiple-scattering term, including straight-in or straight-out terms. To summarize: in
like-element pairwise distances, the vertical component shifts are caused by straight-in or
straight-out higher-order terms. In unlike elements, the vertical component shifts are caused
by all orders of scattering events. There is no shift in the parallel components, for like or unlike
elements, as long as SDA data are used.

We demonstrate that an artifact-free PF can be obtained by using a wide sampling
of wavenumbers k and directions �ki . The system that we choose for demonstration is
Si(111)

√
3 × √

3R30◦–Ga. By conventional (trial-and-error) dynamical LEED analysis, the
surface structure of this system has been determined [9, 10]. A recent dynamical LEED
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(a)
(b)

Figure 1. Schematic views of Si(111)
√

3 × √
3R30◦–Ga with Ga at the T4 site and 1.46 Å above

the topmost Si atoms. (a) The projected side view, and (b) the top view, with �x along [01̄1̄] and �y
along [21̄1̄] directions.

Table 1. Interatomic distances in Å, with the origin at the Ga atom, in the horizontal (x0-) and
vertical (z0-) directions obtained using atomic positions from the multiple-scattering calculation;
and the corresponding quantities (x, z) obtained using spot positions of the PF in figure 3, and their
differences (dx, dz). Atomic pairs 1/6 and 6/9 are too close to be resolved and the average value
is used for x0 and z0; and similarly, for atomic pairs 1/7 and 6/10.

Atomic pairs x0 z0 x z dx dz

1/6, 6/9 0.00 −2.30 0.00 −2.32 0.00 −0.02
1/9 0.00 −4.59 0.00 −4.62 0.00 −0.03
9/28 0.00 −7.04 0.00 −7.00 0.00 0.04
6/7 3.84 0.00 3.84 0.00 0.00 0.00
1/7, 6/10 3.84 −2.30 3.84 −2.30 0.00 0.00
1/10 3.84 −4.59 3.84 −4.50 0.00 0.09
9/29 3.84 −7.04 3.85 −7.00 0.01 0.04
9/12 −2.22 −0.78 −2.23 −0.76 −0.01 0.02
6/12 −2.22 −3.13 −2.23 −3.10 −0.01 0.03
6/16 −2.22 −5.48 −2.22 −5.41 0.00 0.07
1/4 2.02 −1.46 2.02 −1.50 0.00 −0.04
9/21 2.22 −3.91 2.22 −3.90 0.00 0.01
9/25 2.22 −6.26 2.22 −6.20 0.00 0.06

study [10] has obtained an excellent van Hove–Tong R-factor [11] of 0.14, using normal-
incidence IV spectra in the 50–400 eV energy range. In figures 1(a) and (b), we show
schematic diagrams of the structure of this system, with atoms in the surface region numbered
from 1 to 29. We show in figure 2 the sampling of �kf using three incidence angles, i.e.
θ = 0◦; θ = 20◦, φ along [112̄]; and θ = 20◦, φ along [101̄]. All values of �kf within
the dotted circles are sampled. Since the system has a C3 symmetry,a rotation of 120◦ is
imposed on each set with off-normal incidence. Finally, figure 3 shows the PF obtained from
inverting IV spectra calculated by multiple-scattering theory using the incidence directions
shown in figure 2. The PF so obtained is completely artifact-free; every spot corresponds to
an interatomic vector distance. More significant is the fact that the PF is extremely accurate.
Table 1 lists the interatomic distances obtained from the atom positions used in the multiple-
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Figure 2. The reciprocal-lattice space �q11/k, using normal and θ = 20◦ incidence angles and φ

along the mirror planes. The small circles represent the central opening of the LEED detector.

Figure 3. PFs from IV spectra for multiple incidence angles such as those shown in figure 2,
obtained using multiple-scattering theory. The upper panel shows the (21̄1̄) plane; the lower panel
shows the (1̄01) plane. In each xy-plane, which is parallel to the surface, the lowest 10% of the
contours are not shown.

scattering calculation, i.e. x0 and z0, and the positions of the spots of the PF of figure 3, i.e.
x and z. The average error in the vertical distances is only 〈|dz|〉 = 〈|z − z0|〉 = 0.03 Å,
with the largest error being 0.09 Å. The average error in the horizontal distance is even
smaller; most spots in the PF occur at exactly the x0-position, with the largest error being
only 0.01 Å.

4. Outlook

LEED is among the most commonly used surface techniques. LEED data collection software
is available to measure normal and off-normal IV spectra of multiply diffracted beams over
a wide energy range, typically from 50–400 eV, in a matter of a few minutes. It is not
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difficult to envisage artifact-free LEED PFs being routinely obtained from unknown systems
to study the arrangement of atoms in the first 5–10 system layers. The parallel components
are very accurately determined. At the least, the PF method is a powerful ‘litmus test’
for the correct structure. Once an artifact-free PF is obtained for an unknown system, the
interatomic distances determined from the ‘best’ structure of a trial-and-error method must
fit the spots of the PF; otherwise the ‘best’ structure cannot be correct. The next step is to
directly obtain a structural model from the PF. A method for doing this will be published
elsewhere [12].
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